# Life Cycle Thinking

or how to avoid the false good solutions

Séminaire ESPCI PariTech 1er décembre 2017



### Life Cycle Assessment, a consensual tool for environmental evaluation

Inventories (data collection) of flows, input and output



Conversion into impacts (characterization factors)

| Inventory               | Climate change            | Acidification            | Etc |  |
|-------------------------|---------------------------|--------------------------|-----|--|
| 1 000 g of CO,          | X 1 = 1 000               |                          |     |  |
| 10 g of CH <sub>4</sub> | X 25 = 250                |                          |     |  |
| 10 g of 50 <sub>2</sub> |                           | X 1 = 10                 |     |  |
| 5 g of NO <sub>x</sub>  |                           | X 0.5 = 2.5              |     |  |
| Etc                     |                           |                          |     |  |
| Total                   | 1 250 g eqCO <sub>2</sub> | 12.5 g eqSO <sub>2</sub> |     |  |
| Source : ADEME          |                           |                          |     |  |



Refrigerant for automotive air conditioning systems
Global Warming Potential (GWP)





### Allocation rules, a key methodological point

- 1 process/system → several outputs (i.e. co-production of several chemicals)
- Issue: how to split/allocate the inventories/impacts between outputs?



The operator is the most suitable player to select and discuss the relevant allocation rules





### Allocation rules, what about recycling?

- Recycling could be closed loop or open loop (system perimeter to be carefully defined)
- Issue: how to split/allocate the inventories/impacts between outputs?



### Allocation rules, what about recycling?

- Recycling could be closed loop or open loop (system perimeter to be carefully defined)
- Issue: how to split/allocate the inventories/impacts between outputs?





#### CONCLUSION

#### On-going work involving authorities and stakeholders

- Allocation of burdens/benefits between supplier and user of a recycled material
- Allocation according to sector (market incentive)
- Examples: French ADEME-AFNOR BPX30-323 and EC Joint Research Centre (JRC) for Product Environmental Footprint (PEF)

## Evaluating the impacts in the frame of circular economy is not a simple question

- Complexity of recycling loops (open, closed) and End Of Live
- Avoided vs generated environmental burdens by LCA
  - Resource saved (scarcity)
  - Climate Change (energy use, incineration, ...)
  - Energy balance (use, valorization, ...)
  - Impact on air, water and soil ecosystems (incineration, landfilling, ...)
  - ...
- Beyond recycling issues, circular economy and sustainable development is far more complex → economic and social aspects



Source: The Advanced Rechargeable & Lithium Batteries Association, July 2016

| Raw<br>material | Steel, Glass, Paper                         | Plastic, Wood    | Textile                                 |
|-----------------|---------------------------------------------|------------------|-----------------------------------------|
| Allocation      | 100% to producer producing recycled product | 50/50 allocation | 100% to producer using recycled product |

Example of BPX30-323-0 approach (ADEME-AFNOR)





### A GLOBAL COMPACT FOR SUSTAINABLE DEVELOPMENT









































### THANK YOU FOR YOUR ATTENTION

#### Hervé Thiébaud

**Department of Environmental Assessment and Process Analysis** 

Arkema, Centre de Recherche Rhône Alpes

Tel: +33 (0)4 72 39 81 63 Mobile: +33 (0)6 30 52 79 25 herve.thiebaud@arkema.com